Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Heliyon ; 10(7): e28968, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601605

RESUMO

The study aims to explore bee venom (honey-BV) as a potential natural preservative for "Tallaga" soft cheese. Characterization of the active compounds in honey-BV was conducted via chromatographic analyses. Antimicrobial efficacy against pathogenic bacteria and fungi was evaluated, and minimum inhibitory concentration (MIC) was determined. Subsequently, honey-BV was applied to Tallaga cheese at 15 mg/g concentrations. The main active ingredients identified in bee venom were apamin (2%) and melittin (48.7%). Both concentrations of bee venom (100 and 200 mg/mL) exhibited significant antifungal and antibacterial properties against tested organisms, with MIC values varied from 0.2 to 0.5 mg/mL for bacteria to 3-13 mg/mL for fungi. Application of honey-BV in Tallaga cheese resulted in complete elimination of Staphylococcal populations after 2 weeks of cold storage, with no detectable growth of molds or yeasts throughout the storage period. Additionally, a steady decrease in aerobic plate count was observed over time. In summary, honey-BV holds promise as a natural preservative for soft cheese, however, more investigation is required to optimize the concentration for economic viability, taking into account health benefits and safety considerations.

2.
Nanomaterials (Basel) ; 14(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470754

RESUMO

The use of natural raw substances for food preservation could provide a great contribution to food waste reduction, circular economy enhancement, and green process application widening. Recent studies indicated that the use of porous materials as adsorbents for natural essential oils provided nanohybrids with excellent antioxidant and antimicrobial properties. Following this trend in this work, a thymol oil (TEO) rich SBA-15 nanohybrid was prepared and characterized physiochemically with various techniques. This TEO@SBA-15 nanohybrid, along with the pure SBA-15, was extruded with low-density polyethylene (LDPE) to develop novel active packaging films. Results indicated that TEO loading was higher than other porous materials reported recently, and the addition of both pure SBA-15 and TEO@SBA-15 to the LDPE increased the water/oxygen barrier. The film with the higher thyme-oil@SBA-15 nanohybrid content exhibited a slower release kinetic. The antioxidant activity of the final films ignited after 48 h, was in the range of 60-70%, and was almost constant for 7 days. Finally, all tests indicated a sufficient improvement by the addition of thyme-oil@SBA-15 nanohybrids in the pure LDPE matrix and the concentration of wt. 10% of such nanocarriers provided the optimum final LDPE/10TEO@SBE-15 active packaging film. This material could be a potential future product for active packaging applications.

3.
Foods ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38472756

RESUMO

This study delves into the production and antimicrobial characteristics of cell-free supernatants from Pediococcus acidilactici (CFSs-Pa). Antimicrobial activity was initially observed in CFS-Pa harvested after 12 h of incubation and increased up to the late stationary phase at 48 h. The increase in antimicrobial activity did not align with total protein content, pointing to other factors linked to the accumulation of organic acids, particularly lactic acid. The SDS-PAGE analysis also indicated that the expected proteinaceous compound (pediocin) was not observed in CFS-Pa. Further investigations suggested that the antimicrobial properties of CFS-Pa were exclusively due to organic acids. The MIC values confirmed potent antimicrobial activity, particularly at a 10% dilution of CFS-Pa in MRS broth. The time-kill assays demonstrated bactericidal activity against EHEC, Listeria monocytogenes, and Staphylococcus aureus by 12 h, 18 h, and 24 h using a 10% dilution of CFS-Pa. Additionally, CFS-Pa exhibited dose-dependent antioxidant activity, requiring a 70% (v/v) concentration to inhibit DPPH scavenging activity by 50%. All the experimental results suggested potential applications of CFS-Pa in food preservation. An attempt to incorporate CFS-Pa into bacterial cellulose (BC) for edible food packaging demonstrated promising antimicrobial results, particularly against L. monocytogenes and S. aureus, with room for optimization.

4.
Chem Biodivers ; 21(4): e202301978, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379213

RESUMO

The comparative metabolic profiling and their biological properties of eight extracts obtained from diverse parts (leaves, flowers, roots) of the medicinal plant Flourensia fiebrigii S.F. Blake, a chemotype growing in highland areas (2750 m a.s.l.) of northwest Argentina, were investigated. The extracts were analysed by GC-MS and UHPLC-MS/MS. GC-MS analysis revealed the presence of encecalin (relative content: 24.86 %) in ethereal flower extract (EF) and this benzopyran (5.93 %) together sitosterol (11.35 %) in the bioactive ethereal leaf exudate (ELE). By UHPLC-MS/MS the main compounds identified in both samples were: limocitrin, (22.31 %), (2Z)-4,6-dihydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)methylidene]-1-benzofuran-3-one (21.31 %), isobavachin (14.47 %), naringenin (13.50 %), and sternbin, (12.49 %). Phytocomplexes derived from aerial parts exhibited significant activity against biofilm production of Pseudomonas aeruginosa and Staphylococcus aureus, reaching inhibitions of 74.7-99.9 % with ELE (50 µg/mL). Notably, the extracts did not affect nutraceutical and environmental bacteria, suggesting a selective activity. ELE also showed the highest reactive species scavenging ability. This study provides valuable insights into the potential applications of this chemotype.


Assuntos
Asteraceae , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Cromatografia Líquida de Alta Pressão , Folhas de Planta/metabolismo , Asteraceae/metabolismo
5.
Chem Biodivers ; : e202302115, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415904

RESUMO

There is a burgeoning focus on utilizing the antifungal and antioxidant properties of essential oils derived from various plants as a modern and natural approach to combat the growth of fungi that contaminate food. In this study, we used essential oils extracted from Thymus daenensis Celak. subsp. daenensis to address three mycotoxin-producing species of Aspergillus, specifically A. flavus, A. parasiticus, and A. niger, all of which are recognized contaminants of food and agricultural products. Concurrently, the antioxidant properties of the essential oils were evaluated, revealing their noteworthy role in the antifungal activity. Essential oils were derived from T. daenensis subsp. daenensis was observed to have a significant inhibitory effect on all three species of Aspergillus, as evidenced by the minimum inhibitory concentration (MIC) ranging from 575 to 707 ppm and the half-maximal inhibitory concentration (IC50) ranging from 237 to 280 ppm. These results confirm the strong antifungal activity of the essential oils. Furthermore, the essential oil exhibited free radical scavenging activity, resulting in an EC50 value of 37.1 µg/ml. In summary, T. daenensis subsp. daenensis essential oil demonstrated a competitive advantage over other similar plants and synthetic antibiotics. This indicates the promising potential of this essential oil as a natural antifungal agent to control Aspergillus growth and mycotoxin contamination. It offers an alternative or complementary approach to conventional antifungal agents and could be a valuable addition to the arsenal of natural remedies to address fungal contamination in food and agricultural products.

6.
Compr Rev Food Sci Food Saf ; 23(1): e13263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284580

RESUMO

Consumers expect safe, healthy, natural, and sustainable food. Within the food industry, ingredient use is changing due to these consumer demands. While no single agreed-upon definition of clean label exists, a "clean label" in the context of food refers to a product that has a simplified and transparent ingredient list, with easily recognizable and commonly understood components to the general public. Clean-label products necessitate and foster a heightened level of transparency between companies and consumers. Dairy products are vulnerable to being contaminated by both pathogens and spoilage microorganisms. These microorganisms can be effectively controlled by replacing conventional antimicrobials with clean-label ingredients such as protective cultures or bacterial/fungal fermentates. This review summarizes the perspectives of consumers and the food industry regarding the definition of "clean label," and the current and potential future use of clean-label antimicrobials in dairy products. A key goal of this review is to make the concept of clean-label antimicrobial agents better understood by both manufacturers and researchers.


Assuntos
Anti-Infecciosos , Microbiologia de Alimentos , Laticínios
7.
Nat Prod Bioprospect ; 14(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163838

RESUMO

Antimicrobial resistance is a major global health concern, threatening the effective prevention and treatment of infections caused by microorganisms. These factors boosted the study of safe and green alternatives, with hydrosols, the by-products of essential oils extraction, emerging as promising natural antimicrobial agents. In this context, four hydrosols obtained from Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu and Melissa officinalis L. were studied. Their chemical composition comprises neral, geranial, 1,8-cineole, terpinen-4-ol, and oplopanonyl acetate, compounds with recognised antimicrobial activity. Concerning antimicrobial activity, significant differences were found using different hydrosol concentrations (10-20% v/v) in comparison to a control (without hydrosol), showing the potential of the tested hydrosols to inhibit the microbial growth of Escherichia coli, Staphylococcus aureus, and Candida albicans. A. citrodora hydrosol was the most effective one, inhibiting 90% of E. coli growth and 80% of C. albicans growth, for both hydrosol concentrations (p < 0.0001). With hydrosol concentration increase, it was possible to observe an improved antimicrobial activity with significant reductions (p < 0.0001). The findings of this work indicate the viability of reusing and valuing the hydrosols, encouraging the development of green applications for different fields (e.g., food, agriculture, pharmaceuticals, and cosmetics).

8.
Plants (Basel) ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836125

RESUMO

In this study, Salvia officinalis L. and Salvia sclarea essential oils (EOs) were investigated using gas chromatography-mass spectrometry (GC-MS) to describe their chemical composition. The obtained results show, for both EOs, a profile rich in terpene metabolites, with monoterpenes predominating sesquiterpenes but with significant qualitative and quantitative differences. The main compound found in the Salvia officinalis EO (SOEO) was camphor (19.0%), while in Salvia sclarea EO (SCEO), it was linalyl acetate (59.3%). Subsequently, the in vitro antimicrobial activity of the EOs against eight pathogenic strains was evaluated. The disc diffusion method showed a significant lysis zone against Gram-positive bacteria. The minimum inhibitory concentrations (MICs) ranged from 3.7 mg/mL to 11.2 mg/mL, indicating that each EO has specific antimicrobial activity. Both EOs also showed significant antiradical activity against DPPH radicals and total antioxidant activity. In addition, the preservative effect of SOEO (9.2%) and SCEO (9.2%), alone or in combination, was tested in ground beef, and the inhibitory effect against Listeria monocytogenes inoculated into the raw ground beef during cold storage was evaluated. Although the effect of each individual EO improved the biochemical, microbiological, and sensory parameters of the samples, their combination was more effective and showed complete inhibition of L. monocytogenes after 7 days of storage at 4 °C. The results show that both EOs could be used as safe and natural preservatives in various food and/or pharmaceutical products.

9.
Foods ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685139

RESUMO

The microbial quality of raw milk artisanal cheeses is not always guaranteed due to the possible presence of pathogens in raw milk that can survive during manufacture and maturation. In this work, an overview of the existing information concerning lactic acid bacteria and plant extracts as antimicrobial agents is provided, as well as thermisation as a strategy to avoid pasteurisation and its negative impact on the sensory characteristics of artisanal cheeses. The mechanisms of antimicrobial action, advantages, limitations and, when applicable, relevant commercial applications are discussed. Plant extracts and lactic acid bacteria appear to be effective approaches to reduce microbial contamination in artisanal raw milk cheeses as a result of their constituents (for example, phenolic compounds in plant extracts), production of antimicrobial substances (such as organic acids and bacteriocins, in the case of lactic acid bacteria), or other mechanisms and their combinations. Thermisation was also confirmed as an effective heat inactivation strategy, causing the impairment of cellular structures and functions. This review also provides insight into the potential constraints of each of the approaches, hence pointing towards the direction of future research.

10.
Plants (Basel) ; 12(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570937

RESUMO

Consumer demand for natural and healthier products has led to an increasing interest in the bioactive and therapeutic properties of plant extracts. In this study, we evaluated the phenolic compounds profile, bioactivities, and toxicities of plant extracts from eight European flora species, including Calendula officinalis L., Calluna vulgaris (L.) Hull, Hippophae rhamnoides L., Juglans regia L., Mentha cervina L., Rubus idaeus L., Sambucus nigra L., and Vitis vinifera L. The aim was to identify potential preservatives of natural origin. Phenolic compounds were identified by HPLC-DAD-ESI-MS. Caffeic acid derivatives, ellagitannins, flavonols, and flavones were the major phenolic compounds identified. The total phenolic content varied from 16.0 ± 0.2 (V. vinifera) to 123 ± 2 mg/g (H. rhamnoides) of dry extract. All extracts showed antioxidant potential and exhibited activity against some of the microorganisms tested. S. nigra showed the highest activity in the inhibition of oxidative hemolysis (OxHLIA) assay and H. rhamnoides, notably, had the lowest IC50 values in TBARS and DPPH assays, as well as the lowest minimum inhibitory concentration (MIC) values. Regarding in vitro cytotoxicity, in tumor and non-tumor cell lines, although some extracts revealed toxicity against normal cells, it was found that the samples C. vulgaris, V. vinifera and R. idaeus might be used against tumor cells since the active concentration is much lower than the one causing toxicity. In vivo acute toxicity tests using Artemia franciscana suggest low toxicity for most extracts, with LC50 > 400 mg/L. These results showed the potential of the studied extracts as natural preservatives, given their richness in compounds with bioactive properties, highlight their potential value to the production chain.

11.
Foods ; 12(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37444334

RESUMO

Opportunities for the valorisation of agro-industrial residues of the chestnut (Castanea sativa Mill.) production chain have been fostered with the production of multifunctional polyphenol-rich extracts with the potential to be introduced as natural additives or active components in several products. Nonetheless, it is crucial to explore the feasibility of different extracts from the various by-products for these applications through the exhaustive study of their composition and bioactivities without losing sight of the sustainable character of the process. This work aimed at the screening of the phenolic compound composition and bioactivities of different green extracts of chestnut burs, shells and leaves, as the first step to establish their potential application as natural ingredients, primarily as food preservatives. To this end, maceration (MAC) as a conventional extraction method besides ultrasound and microwave-assisted extractions (UAE and MAE) was employed to obtain the extracts from chestnut by-products using water (W) and hydroethanolic solution (HE) as solvents. Phenolic compounds were analysed by HPLC-DAD-(ESI-)MS/MS; the antioxidant capacity was assessed by colourimetric assays, and the antimicrobial activity was evaluated against several strains of food-borne bacteria and fungi. The leaf extracts obtained by MAC-HE and UAE-HE presented the highest concentration of phenolic compounds (70.92 ± 2.72 and 53.97 ± 2.41 mg.g-1 extract dw, respectively), whereas, for burs and shells, the highest recovery of total phenolic compounds was achieved by using UAE-HE and UAE-W (36.87 ± 1.09 and 23.03 ± 0.26 mg.g-1 extract dw, respectively). Bis-HHDP-glucose isomers, chestanin and gallic acid were among the most abundant compounds. Bur extracts (MAC-HE and UAE-HE) generally presented the highest antioxidant capacity as measured by TBARS, while the best results in DPPH and reducing power assays were found for shell extracts (MAE-W and MAC-HE). Promising antibacterial activity was noticed for the aqueous extracts of burs, leaves and hydroethanolic extracts of shells, with emphasis on the MAE-W extract of burs that showed bactericidal activity against E. cloacae, P. aeruginosa and S. aureus (MBC 5 mg.mL-1). Overall, it can be concluded that chestnut by-products, including burs, shells and leaves, are sources of polyphenolic compounds with significant antioxidant and antimicrobial activities. The choice of extraction method and solvent greatly influenced the composition and bioactivity of the extracts. These findings highlight the potential of chestnut by-products for the development of natural additives, particularly for food preservation, while also emphasizing the importance of sustainable utilization of agricultural waste materials. Further research is warranted to optimize extraction techniques and explore additional applications for these valuable bioactive compounds.

12.
Pathogens ; 12(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513805

RESUMO

Campylobacter jejuni is a Gram-negative bacterium which is considered as the most reported cause of foodborne infection, especially for poultry species. The object of this work is to evaluate the occurrence of C. jejuni in chicken meat as well its control via three types of sorghum extracts (white sorghum (WS), yellow sorghum (YS), and red sorghum (RS)); antibacterial activity, antioxidant power, and cytotoxicity of sorghum extracts were also assessed. It was found that C. jejuni is very abundant in chicken meat, especially breast and thigh. WS extract showed more effectiveness than both yellow and red ones. Lyophilized WS extract offered high total phenolic compounds (TPCs) and total flavonoid compounds (TFCs) of 64.2 ± 0.8 mg gallic acid equivalent (GAE/g) and 33.9 ± 0.4 mg catechol equivalent (CE)/g, respectively. Concerning the antibacterial and antioxidant activities, WS showed high and significant antibacterial activity (p < 0.001); hence, WS displayed a minimum inhibitory concentration (MIC) of 6.25%, and revealed an inhibition zone of 7.8 ± 0.3 mm; it also showed an IC50 at a concentration of 34.6 µg/mL. In our study, different samples of chicken fillet were collected and inoculated with pathogenic C. jejuni and stored at 4 °C. Inoculated samples were treated with lyophilized WS extract at (2%, 4%, and 6%), the 2% treatment showed a full reduction in C. jejuni on the 10th day, the 4% treatment showed a full reduction in C. jejuni on the 8th day, while the 6% treatment showed a full reduction in C. jejuni on the 6th day. Additionally, 2%, 4%, and 6% WS extracts were applied on un-inoculated grilled chicken fillet, which enhanced its sensory attributes. In sum, WS extract is a promising natural preservative for chicken meat with accepted sensory evaluation results thanks to its high antibacterial and antioxidant potentials.

13.
Meat Sci ; 204: 109268, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37379705

RESUMO

Raw beef patties were treated with either 450 ppm of Sodium metabisulphite (SMB), or Kakadu plum powder (KPP) (0.2%, 0.4%, 0.6%, 0.8%) or no additive (negative control) and stored under Modified Atmosphere Packaging at 4 ± 1 °C for 20 days. Lipid oxidation, microbial growth rate, pH, instrumental color, and surface myoglobin were studied. Total phenolic compounds (TPC) and vitamin C of the KPP were also measured. The TPC was 13.9 g GAE/ 100 g dry weight (DW) and for vitamin C, the L-AA (l-ascorbic acid) and DHAA (dehydroascorbic acid) were 12.05 g/100 g and 0.5 g/ 100 g DW, respectively. The experimental results indicated that lipid oxidation was significantly delayed throughout the storage period for KPP-treated samples compared to both the negative control and SMB-treated samples. KPP at levels of 0.2% and 0.4% in the raw beef patties were efficient in slowing down the microbial growth rate compared to the negative control; however, SMB had a higher antimicrobial activity. The pH, the redness as well as metmyoglobin formation in the raw beef patties were reduced by the inclusion of the KPP in treated samples. A correlation (r = -0.66) was noted between KPP treatments and lipid oxidation, but there was no correlation (r = -0.006) between KPP treatment and microbial growth. This study demonstrates that KPP could be used as natural preservative for shelf-life extension of raw beef patties.


Assuntos
Prunus domestica , Terminalia , Animais , Bovinos , Ácido Ascórbico/farmacologia , Lipídeos , Atmosfera , Estresse Oxidativo
14.
Carbohydr Polym ; 317: 121032, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364941

RESUMO

Nisin is a cationic antimicrobial peptide used as a natural food preservative against gram-positive bacteria. However, nisin is degraded following interaction with food components. Here, we report the first use of Carboxymethylcellulose (CMC), a versatile and affordable food additive, to protect nisin and extend its antimicrobial activity. First, we optimized the methodology by considering the effect of nisin:CMC ratio, pH, and, especially, the degree of substitution of CMC. In particular, we show here how these parameters affected the size, charge, and, notably, the encapsulation efficiency of these nanomaterials. This way, optimized formulations contained over 60 % w/w in nisin while encapsulating ∼90 % of the nisin used. We then show that these new nanomaterials inhibited the growth of Staphylococcus aureus, a major foodborne pathogen, using milk as a representative food matrix. Remarkably, this inhibitory effect was observed with one-tenth of the concentration of nisin currently used in dairy products. We believe that the combination of the affordability of CMC, flexibility and simplicity of preparation, and the ability to inhibit the growth of food pathogens, makes these nisin:CMC PIC nanoparticles an ideal platform to underpin new nisin formulations.


Assuntos
Nanopartículas , Nisina , Nisina/farmacologia , Antibacterianos/farmacologia , Carboximetilcelulose Sódica/farmacologia , Conservantes de Alimentos/farmacologia
15.
Food Chem ; 423: 136350, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196409

RESUMO

The study was carried out to investigate cricket protein hydrolysates' (CPH) potential to enhance the storage stability of cheddar cheese. The cricket protein (CP) samples pre-processed with microwave (T1), ultrasonication (T2) or without pre-treatment (T0) were used for developing the CPH using alcalase enzyme (3%). Freeze-dried CPH were incorporated in the cheese samples (CPH-T1, CPH-T2 and CPH-T0) at the maximum level of 1.5% and were analysed for quality during 3 months of storage (4 ± 1 °C) compared to the control samples without CPH. The pre-treatments significantly improved the antimicrobial and antioxidant potential of the CPH. The CPH exhibited a significant positive effect on antioxidant potential, lipid stability, protein oxidation, microbial growth, and sensory quality of the cheddar cheese during storage. Digestion simulation showed a significant positive impact on the antioxidant activity of the cheddar cheese. Our results indicate the potential of CPH to enhance the quality of fat-rich foods during storage.


Assuntos
Queijo , Gryllidae , Animais , Antioxidantes , Queijo/análise , Hidrolisados de Proteína , Micro-Ondas , Estresse Oxidativo , Lipídeos
16.
BMC Chem ; 17(1): 36, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055840

RESUMO

BACKGROUND: Guava (Psidium guajava Linn.) has been traditionally used in the treatment of a wide range of diseases due to its rich content of secondary metabolites. AIM: This study was aimed to evaluate the effect of altitude and solvent systems on guava leaves crude extract's phenolics and flavonoid content, antioxidant, antimicrobial, and toxicity nature. METHODS: Guava leaves were collected from three different geographical locations in Nepal while solvents with an increasing polarity index were used for extraction. The yield percentage of extracts was calculated. Total Phenolic Content, Total Flavonoid Content, and antioxidant activity were determined by the Folin-Ciocalteu method, Aluminium chloride colorimetric method, and DPPH (2,2'-Diphenyl-1-picrylhydrazyl) assay respectively. The quantification of fisetin and quercetin was performed using the HPLC with method validation. The antimicrobial activity of the extracts was tested against bacteria and fungus isolated from spoiled fruits and vegetables and identified through 16s and 18s rRNA sequencing. Finally, Brine Shrimp Lethality Assay (BSLA) was used for testing the toxicity of the extracts. RESULTS: The phenolic and total flavonoid content was found to be higher in ethanol extract (331.84 mg GAE/g dry extract) and methanol extract (95.53 mg QE/g dry extract) from Kuleshwor respectively. Water extract of guava leaves from Kuleshwor (WGK) did not show significantly different antioxidant activity when compared to methanol and ethanol extracts. Fisetin and quercetin were higher in WGK (1.176 mg/100 g) and (10.967 mg/100 g) dry extract weight respectively. Antibacterial activity against food spoilage bacteria was dose-dependent and found to be highest for all the extracts from different solvents and altitudes at higher concentrations (80 mg/ml). Similarly, methanol and ethanol guava extracts from all locations showed antifungal activity against Geotrichum candidum RIBB-SCM43 and Geotrichum candidum RIBB-SCM44. WGK was found to be non-toxic. CONCLUSION: Our study concludes that the antioxidant and antimicrobial activity of WGK was found to be similar statistically to that of methanol and ethanol extracts of Bishnupur Katti and Mahajidiya. These results suggest the possibility of using water as a sustainable solvent to extract natural antioxidant and antimicrobial compounds which can further be used as natural preservatives to extend the shelf life of fruits and vegetables.

17.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978792

RESUMO

This study focused on the quality loss inhibition of fish muscle during refrigerated storage. Two parallel experiments were carried out that were focused on the employment of pitaya (Stenocereus thurberi) extracts in biodegradable packing films. On the one hand, a pitaya-gelatin film was employed for hake (Merluccius merluccius) muscle storage. On the other hand, a pitaya-polylactic acid (PLA) film was used for Atlantic mackerel (Scomber scombrus) muscle storage. In both experiments, fish-packing systems were stored at 4 °C for 8 days. Quality loss was determined by lipid damage and microbial activity development. The presence of the pitaya extract led to an inhibitory effect (p < 0.05) on peroxide, fluorescent compound, and free fatty acid (FFA) values in the gelatin-hake system and to a lower (p < 0.05) formation of thiobarbituric acid reactive substances, fluorescent compounds, and FFAs in the PLA-mackerel system. Additionally, the inclusion of pitaya extracts in the packing films slowed down (p < 0.05) the growth of aerobes, anaerobes, psychrotrophs, and proteolytic bacteria in the case of the pitaya-gelatin films and of aerobes, anaerobes, and proteolytic bacteria in the case of pitaya-PLA films. The current preservative effects are explained on the basis of the preservative compound presence (betalains and phenolic compounds) in the pitaya extracts.

18.
Foods ; 12(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36981237

RESUMO

Natural preservatives such as garlic and ginger can be added to the formulation of fresh fruit juices to encourage the consumption of health-promoting foods. In this study, the influence of garlic and ginger and the storage conditions on physicochemical and microbiological characteristics of fruit juices were investigated. The fruit juice assortments were produced from apple, apple and pumpkin, and apple and pomegranate and were treated with 0.5 g garlic powder, 0.5 g ginger powder, and 0.25 g mix of garlic and ginger powders. A total of 12 unpasteurized samples were produced, of which 3 were control samples. Samples stored at 20 and 4 °C were analyzed at 0, 3, 6, and 9 days for water activity (aw), pH, titratable acidity (TA), total soluble solids (TSS), electrical conductivity (EC), vitamin C, color parameters, total number of germs, yeasts, and molds, Listeria, Enterobacteriaceae, and Escherichia coli. Results showed that aw, pH, TSS, and vitamin C content decreased during storage of fruit juice samples, while TA increased. The lowest increase in total number of aerobic mesophilic germs was determined for the apple and pumpkin juice with garlic and ginger and apple juice with garlic.

19.
Foods ; 12(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36981259

RESUMO

Essential oils possessing antimicrobial characteristics have acquired considerable interest as an alternative to chemical preservatives in food products. This research hypothesizes that manuka (MO) and kanuka (KO) oils may possess antimicrobial characteristics and have the potential to be used as natural preservatives for food applications. Initial experimentation was conducted to characterize MOs (with 5, 25, and 40% triketone contents), rosemary oil (RO) along with kanuka oil (KO) for their antibacterial efficacy against selected Gram-negative (Salmonella spp. and Escherichia coli), and Gram-positive (Listeria monocytogenes and Staphylococcus aureus) bacteria through disc diffusion and broth dilution assays. All MOs showed a higher antimicrobial effect against L. monocytogenes and S. aureus with a minimum inhibitory concentration below 0.04%, compared with KO (0.63%) and RO (2.5%). In chemical composition, α-pinene in KO, 1, 8 cineole in RO, calamenene, and leptospermone in MO were the major compounds, confirmed through Gas-chromatography-mass spectrometry analysis. Further, the antimicrobial effect of MO and RO in vacuum-packed beef pastes prepared from New Zealand commercial breed (3% fat) and wagyu (12% fat) beef tenderloins during 16 days of refrigerated storage was compared with sodium nitrate (SN) and control (without added oil). In both meat types, compared with the SN-treated and control samples, lower growth of L. monocytogenes and S. aureus in MO- and RO- treated samples was observed. However, for Salmonella and E. coli, RO treatment inhibited microbial growth most effectively. The results suggest the potential use of MO as a partial replacement for synthetic preservatives like sodium nitrate in meats, especially against L. monocytogenes and S. aureus.

20.
Foodborne Pathog Dis ; 20(3): 110-119, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36893329

RESUMO

Staphylococcus aureus is a common foodborne pathogen and spoilage bacterium in meat products. To develop a natural preservative for meat products, this study revealed the antibacterial activity and mechanism of Rosa roxburghii Tratt pomace crude extract (RRPCE) against S. aureus, and applied RRPCE to the preservation of cooked beef. The diameter of inhibition zone, minimum inhibitory concentration (MIC), and minimum bactericide concentration of RRPCE against S. aureus were 15.85 ± 0.35 to 16.21 ± 0.29 mm, 1.5 mg/mL, and 3 mg/mL, respectively. The growth curve of S. aureus was completely stalled by treatment with RRPCE at 2 MIC. RRPCE results in the decrease of intracellular adenosine 5'-triphosphate (ATP) content, depolarization of cell membrane, leakage of cell fluid including nucleic acid and protein, and destruction of cell membrane integrity and cell morphology. During storage, RRPCE significantly reduced S. aureus viable counts, pH, and total volatile basic nitrogen of cooked beef compared with untreated samples (p < 0.05). In addition, RRPCE could significantly increase the redness (a*) value, decrease lightness (L*) and yellowness (b*) values, and slow down the color change of cooked beef (p < 0.05). These findings suggest that RRPCE can effectively inhibit S. aureus, and has the potential as a natural preservative for the preservation of cooked beef.


Assuntos
Produtos da Carne , Carne Vermelha , Rosa , Animais , Bovinos , Staphylococcus aureus , Rosa/química , Carne Vermelha/microbiologia , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA